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N O N L I N E A R  O S C I L L A T I O N S  O F  A G A S  IN  A C L O S E D  T U B E  

A. A. Aganin and M. A. II'gamov UDC 534.222.2 

Introduction. Longitudinal oscillations of  a gas in a tube, one end of which is stationary and the other moves in 

accordance with a given periodic law, are discussed. The tube walls are assumed to be perfectly rigid. Small oscillation 

amplitudes are dealt with in many experimental studies and analytic solutions [1-7]. They can therefore be used to test the 

numerical approaches employed. However, oscillation regimes in a tube at high amplitudes of piston displacements have not 

been studied thus far. This is chiefly due to the limitations of the method of investigation employed, which usually are based 
on perturbation methods. 

In the present work, the study of wave processes is based on a numerical integration of  the equations of  gas dynamics 

[8, 9]; this made it possible to examine transient processes from the initial state to a periodically recurring regime and to 
remove stringent restrictions on the oscillation amplitude. 

We are dealing with oscillations involving a change in excitation frequency ~ near half the fundamental frequency of 

the tube f~ = ~rc0/L, where c o is the sound velocity in the unperturbed medium at the initial instant t = 0, and L is the tube 

length (the distance between the closed end and the mean position of the piston). We are dealing with the dependence of the 

solution on the ratio of half the path of the piston l to the tube length L over a wide range of I/L. Viscous effects in the gas 

are not considered, this being permissible for tubes of relatively large diameter [5]. 

Statement of  the Problem. The numerical integration of the equations of ideal-gas dynamics is carried out in the two- 

dimensional region 0 -< x < R, yp(t) < y < L (Fig. 1), provided that the line x = 0 is the axis of symmetry, and the normal 

components of the velocity vector at the boundaries y = L and x =  R are zero. The position of the left-hand boundary yp(t) 

is defined by the equation 

Ye(t) = Yo + 'f v ( t )d t ,  
0 

where Yo = yp(0), and vp(t) is given by the equations 

v = lwsin~; (1) 

b sin2~ . 
5 ko 

Here ~ = o~t + 'Po; ~P0 = ,p(0); b = I/a; a is the length of the connecting rod. At the initial instant t = 0, the parameters of 

the problem were taken as follows: ~o = 7r/2, Y0 = 0, density p(x, y) = P0, specific internal energy I(x, y) = I o, velocity 

v(x, y) = v 0 = 0 everywhere except y = Yo, where v(x, YO) = Vp(0). 

In addition, b = 0.2732, which corresponds to the experiment in [3]. In all known theoretical papers, the law (1) was 

used. The expression (2) is the law of oscillation of a piston in a motor and was discussed only in [8, 9]. 

The calculation was carried out using the two-dimensional method in dimensionless variables. The parameters used 

in the nondimensionlization were unperturbed values of density Po and sound velocity c o, and the tube length L. In the 

calculations, the size of  the cells along.the Oy axis was determined by the equality Ay = (L - yp(t))/Ny (Ny being the number 

of grid cells along the Oy axis). Along the radial coordinate in the grid, there was only one element Ax = R = 0.1L. Thus, 

the grid was mobile in the longitudinal direction and had a constant radius. 
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Selection of the number of elements and numerical convergence. Figure 2 presents results of calculations on different 

grids: Ny = 20, 40, 80, 160, 320. Shown is the change in pressure with time at a point near the closed end of  the tube (a) and 

the change in velocity at a point located at an equal distance from the piston and from the stationary end of the tube (b). The 

input data of  the problem are: Po = 1.03235, I o = 1.8085, IlL = 0.03225, b = 0.25, go = 90~ o: = 0.512, yp(t = 0) = 0, 
law of piston oscillation (2). The fundamental characteristics of the solution with all the extreme values of  pressure are 

conveyed in all the calculation variants. In addition, the numerical values are similar only when Ny > 80. 

On the basis of  calculations made on different grids, it may be concluded that in order to analyze problem in the 

category under consideration, it is necessary to carry out calculations using no fewer than 80 cells. This statement applies to 

the change in pressure. However, where necessary, the number of  cells may be increased. 

A number of calculations were made to estimate the contribution of the radicand and the denominator of Eq. (2) to 

the solution. It was found that the presence of a radical has no significant effect. In Fig. 3, which shows the time dependences 

of the pressure at the closed end, the results coincide graphically for the laws Vp = -0.5/cob sin2~r and Vp = -0.5/~ob sin 

2~/~1 - b 2 sin2~. The solutions are similar both for small values of  I/L (l/L = 0.03) and for large ones (l/L = 0.15). 

Dependence of  the Solution on the Form of Excitation. Figures 4 and 5 show graphs of the time dependences of  the 

pressure near the closed end of  the tube. The dashed curves are the calculated ones. Figure 4 pertains to law (1), and Fig. 5 

to law (2). Figure 6 shows the double amplitude of oscillations during a period at the same point as a function of oscillation 

frequency near co = 0 .St ,  and the dashed lines also are the calculated ones here; among them, curves 2 and 3 pertain to laws 

(1) and (2), respectively, and 2 corresponds to excitation, which is obtained from Eq. (2) by neglecting the first term in square 
brackets. From Figs. 4-6, where llL = 0.03225, it is evident that the transition from law (2) to law (1) is accompanied by 

significant changes. Thus, the double amplitude of the pressure oscillations at o: = 0.5fl during a period is reduced by a factor 

of almost 2. The oscillation shape itself also changes: in the case of law (1) (Fig. 4), there occurs an alternation in magnitude 

of  the jumps, which differ by a factor of approximately 2. In the case of  law (2), the jumps remain almost unchanged. 

For comparison, the continuous lines in Fig. 6 represent curves obtained from the equation 

PoCo~" P 
p -- COSr.u *t, 

sin(o~*L/r 

which is the solution of equations of linear acoustics with the boundary conditions 
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(3) 
V = co / * s l r l o . J  t. 

P 

Curve 1 is obtained from (3) when ~0" = o~, l* = l, and curve 2 is obtained when ~o* = 2o~, l* = - /b /4 .  Clearly, in the first 

case o~ = 0.50 will give the first nonlinear resonance for the law (3), and in the second case, the first linear resonance. 

Oscillations during High Excitation. It is well known that at small oscillation amplitudes of  the piston, outside the 

vicinity of  resonances, the nonlinear terms are weakly manifested. Therefore, the solutions of  linear and nonlinear problems 

should be similar. This is indeed observed in Fig. 6: as the deviation from ~0 = 0.50 increases, dashed curves 1 and 2 converge 

to the continuous curves~ 

The effect of the nonlinear terms in the vicinity of the first nonlinear resonance at low values of the piston stroke is 

discussed in detail in [3], both theoretically on the basis of the solution of nonlinear equations of gas dynamics for constant 

entropy and experimentally. The analytic solution and experimental data from [3] are shown by continuous lines in Figs. 4 and 

5, respectively. In both cases, good agreement is observed between them and the numerical solution. A discrepancy takes place 

only in the vicinity of  discontinuities, this being entirely natural for numerical methods, which possess artificial shock-capturing 

viscosity. 
Thus, a comparison with solutions of the linear and nonlinear problems as well as with experimental data for a short 

piston stroke shows that the numerical results correctly reflect the fundamental characteristics of the solution. 

It is apparent from Fig. 6 that the maximum values of  the dashed curves do not exactly correspond to o~ = 0.50 (a 

deviation of  about 2% is observed). The same can be seen in Figs. 7 and 8. Figure 7 shows curves of  double amplitude of 

pressure oscillations at the closed end of the tube during a time of 58 < t <_ 62. The continuous lines correspond to frequency 

w = 0.59, and the dashed lines correspond to those frequencies in the vicinity of 0.59 at which the oscillation double amplitude 

takes on an extreme value. I r is  evident from Fig. 6 that as / /L  increases, the discrepancy between the continuous and dashed 

curves also increases. Whe n / / L  = 0.12, ~it is -- 25% for curves 2. 

The content and notation used in Fig. 8 correspond to Fig. 6. The difference is that here / /L = 0.12. A comparison 

of Figs. 6 and 8 shows that as the length'of the piston stroke increases, a change takes place in both the behavior of the curves 

for the same laws of excitation and ~in the differences between the curves corresponding tO different laws. For example, the 

deviation of  the maximum value toward high frequencies along the abscissa increases for all the laws. However, the maximum 

values themselves and the degree of  deviation for different laws are different. Thus, whereas for / /L = 0.03225 the maximum 

of curve 2 along the ordinate is located between the corresponding values of curves 1 and 3 (at almost the same distance from 

them), f o r / / L  = 0.12 the mean poskion occupies the maximum of curve 1. In addition, here the difference between this 

maximum and the highest value of curve 2 appreciably exceeds (almost by a factor of 4) the analogous difference between the 

maxima of curves 1 and 3. 
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An increase in / /L  appreciably affects not only the magnitude of the oscillation double amplitude but also the shape 

of the oscillations. Figure 9 shows the change in pressure during a period at a point of the closed end of the tube in the range 

of l/L from 0.005 to 0.15 for the law (2) and frequency ~ = 0.5fL It is evident that when/ /L = 0.005, the deviations from 

the mean value P/P0 = 1.0 to the higher and lower sides are almost the same. When//L = 0.15, they already differ by a factor 

of more than 2.5, and as / /L  increases, the front maximum steadily increases while the minimum reaches = 0.75 when/ /L 

= 0.09, then begins to increase again. Thus, as I/L increases, descent from resonance takes place. This is evident from both 

the change in oscillation shape (Fig. 9) and the magnitude of their double amplitude (Fig. 7). 
Transient Regime. Use of the numerical method makes it possible to discuss transient processes in the entire range 

from the initial unperturbed state to a periodically recurring regime. For different frequencies, magnitudes of the piston stroke 

and laws of  excitation, they differ in duration and in the character of change in parameters. For / /L  = 0.3225, Fig. 10 shows 

the time curves of the pressure for ~ = 0.51[~, law (2) (Fig. 10), and for ~ = 0.5fl, law (1) (Fig. 11). It is evident that in 

the first case, the final oscillation shape is obtained almost immediately. As time goes on, there is only some change in the 

numerical values. The process becomes stabilized as early as t = 16. In the second case, the oscillations do not become 

stabilized until t _> 45, and prior to that, appreciable changes take place in the shape of the oscillations, the amplitude of which 

initially decreases (to t = 30), then gradually increases to the steady-state values. 

Conclusions. The studies show that for a short piston stroke (//L = 0.3225), the results obtained on the basis of the 

numerical solution of the equations of gas dynamics are in good agreement with the solution of linear equations outside the 

resonance region as well as with the solution of  nonlinear equations for the first nonlinear resonance ~ = 0.5[2. In that case, 

good agreement with experimental data is also observed. It was found that the presence of a radical in the denominator of the 

second law of excitation has little effect on the solution. 

In addition, it was found that when o~ = 0.5fZ and I/L ranges from 0 to 0.20 in the initial portion of time, the law (2) 

being used, the first term, which represents the law (1) predominates in all the variants. Then the role of  the second term 

increases, and become predominant for all values of time. When the piston moves (//L _> 0.03), the two terms make 

approximately the same contribution to the solution, and the effect of the first term increases more and more as l/L increases. 

Under the law (1), in the initial time interval, an appreciable rearrangement of oscillation shape takes from the initial form to 

the steady state. 
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On the whole, at high values of the piston stroke, the contribution of nonlinear effects increases appreciably, and as 
a result, the change in parameters under the general law (2) differs significantly from their change when its individual terms 

are used and from the simple sum of the results thus obtained. 

The work was done under grant No. 93-013-17940 of the Russian Fund for Fundamental Research. 
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